drshailesh88/integrated_content_os
social-media-trends-research
Programmatic social media and marketing research using free tools: pytrends (Google Trends), yars (Reddit without API keys), and Perplexity MCP (Twitter/TikTok/Web). Use when finding trending topics in a niche, tracking keyword velocity and volume, monitoring Reddit discussions, discovering what's going viral, or researching content opportunities before writing. Zero-cost research stack with built-in rate limiting. Complements content-marketing-social-listening skill with executable code.
academic-chapter-writer
Comprehensive academic textbook chapter writing system for medical/scientific content. Use when the user wants to: (1) Write a full textbook chapter (5,000-15,000 words) on any medical/scientific topic, (2) Generate a detailed table of contents with section word counts, (3) Research topics via PubMed MCP and compile 20-30 references, (4) Write section-by-section with proper citations in Vancouver format, (5) Create publishable academic content with Eric Topol-inspired voice and authentic human prose, (6) Get approval at TOC stage before writing begins, (7) Export well-structured chapters for textbook publication.
viral-content-predictor
>
authentic-voice
Transform AI-sounding writing into natural, human prose. Use when creating or editing any written content—articles, essays, reports, emails, social posts, scripts, or marketing copy—to avoid patterns that signal AI authorship. Triggers on requests to "make it sound human," "less AI," "more natural," improve voice/tone, or any writing task where authentic style matters.
content-marketing-social-listening
Comprehensive content marketing toolkit for discovering viral content opportunities, social listening, knowledge gap analysis, and content demand assessment across platforms. Use when researching trending topics in a niche, finding what's going viral, assessing content knowledge gaps, planning content calendars, or identifying high-demand content opportunities. Integrates with perplexity-search for real-time trend data and research-lookup for deep analysis.
infographic-generator
Generate world-class medical infographics using carousel-level visual language. Templates include hero stats, multi-section layouts, comparisons, myth-busters, process flows, and patient checklists. Default 1080x1350 for Instagram.
browser-automation
Browser automation for ChatGPT Plus and Gemini Advanced web interfaces. Uses Playwright MCP to interact with your paid subscriptions without API costs. Supports both models for writing comparison.
influencer-analyzer
Track and analyze cardiology content creators (Topol, Attia, York Cardiology, Indian channels). Discovers content patterns, topics, engagement, and gap opportunities for your Hinglish content strategy.
carousel-generator
Instagram carousel generator. Creates 1080x1080px branded slides from text/markdown input. Use this skill when you need to generate Instagram carousel slides with Dr. Shailesh Singh's brand colors, typography, and footer. Supports both @heartdocshailesh and @dr.shailesh.singh accounts.
medical-newsletter-writer
>
deep-researcher
Performs comprehensive, multi-layered research on any topic with structured analysis and synthesis of information from multiple sources. Uses file-based research tracking, parallel investigation threads, and context-efficient patterns for deep investigations. ALL MEDICAL CITATIONS FROM PUBMED MCP ONLY.
content-seo-optimizer
Three-agent SEO audit pipeline. Scrapes your content → analyzes SERP competitors → generates prioritized optimization report with P0/P1/P2 recommendations. Use BEFORE and AFTER publishing to maximize organic reach.
youtube-script-master
Unified YouTube script creation for cardiology channels in Hinglish. Uses the COMPLETE research-engine pipeline (channel scraping, comment analysis, narrative monitoring, gap finding, view prediction) combined with RAG + PubMed for evidence. Data-driven topic selection, 15-30 min educational videos with 6-point voice check.
video-delivery-coach
Analyze YOUR video recordings before publishing. Evaluates voice (pace, pitch, volume), facial expressions (emotions, eye contact, smiles), and content (filler words, structure). Helps improve your Hinglish YouTube delivery over time.
cardiology-topol-writer
Transform thought dumps into polished cardiology content in Eric Topol's Ground Truths voice. Use when the user wants to write cardiology articles, newsletters, video scripts, or educational content from scattered ideas, clinical observations, or research notes—combining Eric Topol's evidence-based clarity with Peter Attia's deep-dive rigor.
content-trend-researcher
Advanced content and topic research skill that analyzes trends across Google Analytics, Google Trends, Substack, Medium, Reddit, LinkedIn, X, blogs, podcasts, and YouTube to generate data-driven article outlines based on user intent analysis
parallel-literature-search
Parallel search across PubMed, Perplexity, and your knowledge base. Searches all sources simultaneously and synthesizes findings with citations. Faster evidence gathering for clinical questions.
quick-topic-researcher
Rapid topic mastery for video/content prep. Takes a topic → generates 5 research questions → parallel PubMed + web search → outputs McKinsey-style brief in 5 minutes. Use BEFORE recording videos or writing content.
content-os
Content OS orchestrator - the master skill that produces ALL content types from one seed idea (forward mode) or splits long-form content into short-form pieces (backward mode). Invokes research, writing, quality review, and visual generation skills in a coordinated pipeline. Long-form content goes through full quality gates; short-form gets quick accuracy pass.
ensemble-content-scorer
Multi-model consensus scoring for content ideas. Scores the same idea with Claude, GPT-4o, Gemini, and Grok in parallel, then aggregates for a balanced verdict. Reduces single-model bias and improves viral predictions.
cardiology-trial-editorial
Identify landmark cardiology trials and write evidence-based editorials in Eric Topol's authoritative Ground Truths style. Use when the user wants to: (1) Discover and evaluate recent important trials from top cardiology journals (NEJM, JACC, Lancet, EHJ, Circulation), (2) Assess trial importance using systematic scoring, (3) Write 500-word editorials on cardiology/interventional cardiology advances for physician audiences, (4) Create thought leadership content that demonstrates deep domain expertise. Supports both full-text and abstract-only scenarios with PubMed integration for references.
twitter-longform-medical
Write data-driven, evidence-first long-form Twitter posts on medicine and cardiology. Use when the user wants to: (1) Create thought leadership content in the style of Eric Topol, Peter Attia, Andrew Huberman, or Rhonda Patrick, (2) Present clinical evidence with charts, data, and Q1 journal citations for educated non-specialist audiences, (3) Write confident, matter-of-fact medical content that is rigorous without being inaccessible, (4) Explain trials, drugs, or medical phenomena using data visualization and systematic evidence review, (5) Build authority through methodological rigor and clear conclusions backed by evidence. NOT for newsletters or Substack. For Twitter long-form posts only.
generate-image
Generate or edit images using AI models (FLUX, Gemini). Use for general-purpose image generation including photos, illustrations, artwork, visual assets, concept art, and any image that isn't a technical diagram or schematic. For flowcharts, circuits, pathways, and technical diagrams, use the scientific-schematics skill instead.
x-post-creator-skill
Create scientifically rigorous, engaging X (Twitter) posts for cardiology thought leadership. Use when generating social media content for a cardiologist targeting patients, caregivers, health optimizers, people with lifestyle diseases (hypertension, diabetes, cholesterol), and sedentary individuals seeking prevention. Produces batches of 10 unique posts using strategic combinations of 300+ cardiology seed ideas, 215+ modifiers, 5 audience archetypes, awareness levels, and proven copywriting frameworks (4A, Magical Multipliers). Features self-improvement through accumulated feedback.
perplexity-search
Perform AI-powered web searches with real-time information using Perplexity models via LiteLLM and OpenRouter. This skill should be used when conducting web searches for current information, finding recent scientific literature, getting grounded answers with source citations, or accessing information beyond the model's knowledge cutoff. Provides access to multiple Perplexity models including Sonar Pro, Sonar Pro Search (advanced agentic search), and Sonar Reasoning Pro through a single OpenRouter API key.
bioservices
Primary Python tool for 40+ bioinformatics services. Preferred for multi-database workflows: UniProt, KEGG, ChEMBL, PubChem, Reactome, QuickGO. Unified API for queries, ID mapping, pathway analysis. For direct REST control, use individual database skills (uniprot-database, kegg-database).
cardiology-newsletter-writer
Create evidence-based cardiology newsletters for thought leadership in Eric Topol's authoritative Ground Truths style. Use when the user wants to analyze trending medical topics with engagement predictions, conduct data-driven topic selection, research medical literature using PubMed, or write comprehensive well-referenced newsletters that build professional authority as an interventional cardiologist. Handles complete workflow from trend analysis to final draft with smooth analytical flow between topics.
multi-model-writer
Unified writing system with intelligent model routing. Default: Claude. Options: GLM-4.7 (cheapest), GPT-4o/mini, Gemini, Grok. Includes browser automation for web interfaces. Cost-aware routing based on task complexity.
cardiology-content-repurposer
Transform long-form cardiology content (YouTube transcripts, newsletters, PDFs, knowledge bases) into high-quality thought leadership content across multiple formats. Use when the user wants to repurpose medical/cardiology content into: (1) Short newspaper articles (Inshorts style), (2) Atomic essays, (3) Tweets, (4) Twitter threads, or (5) Medium-style blogs. Maintains authentic interventional cardiologist voice with clinical authority, uses 4A framework, targets specific patient archetypes, and leverages PubMed for evidence-based citations when needed.
PDF manipulation toolkit. Extract text/tables, create PDFs, merge/split, fill forms, for programmatic document processing and analysis.
cardiology-science-for-people
Write rigorous, accurate cardiology science for general audiences—not doctors. Use when the user wants to: (1) Explain clinical trials or research in plain English, (2) Write science content an 8th grader can understand WITHOUT dumbing it down, (3) Create thought leadership for the intelligent public rather than medical peers, (4) Transform complex cardiology findings into stories and narratives, (5) Write pieces where readers DON'T need another LLM to understand the explanation. Maintains full scientific rigor with PubMed citations for verification while avoiding academic language, trial acronyms, and intimidating statistics.
latex-posters
Create professional research posters in LaTeX using beamerposter, tikzposter, or baposter. Support for conference presentations, academic posters, and scientific communication. Includes layout design, color schemes, multi-column formats, figure integration, and poster-specific best practices for visual communication.
pptx
Presentation toolkit (.pptx). Create/edit slides, layouts, content, speaker notes, comments, for programmatic presentation creation and modification.
treatment-plans
Generate concise (3-4 page), focused medical treatment plans in LaTeX/PDF format for all clinical specialties. Supports general medical treatment, rehabilitation therapy, mental health care, chronic disease management, perioperative care, and pain management. Includes SMART goal frameworks, evidence-based interventions with minimal text citations, regulatory compliance (HIPAA), and professional formatting. Prioritizes brevity and clinical actionability.
cardiology-youtube-scriptwriter
End-to-end YouTube content creation for cardiology channels. Use when user wants to create YouTube videos about cardiology, heart health, or cardiovascular topics. Triggers on greetings with content intent, requests for video ideas or scripts, help with cardiology YouTube channels, heart health video content requests, or any cardiology content creation conversation. Handles complete workflow from ideation through social listening, topic selection, and full script delivery.
cardiology-editorial
Comprehensive cardiology editorial writing system for thought leadership newsletters. Use when the user wants to: (1) Identify and score recent landmark trials from top cardiology journals (NEJM, JAMA, Lancet, JACC, EHJ, etc.), (2) Write evidence-based editorials in Eric Topol's style from Ground Truth, (3) Create 500-word commentaries on clinical trials with PubMed citations, (4) Analyze trial importance using hybrid rules + LLM scoring, (5) Write editorials from full papers OR abstract-only scenarios, (6) Build thought leadership content for cardiologists, or (7) Synthesize recent cardiology advances for peers and referring physicians.
stable-baselines3
Use this skill for reinforcement learning tasks including training RL agents (PPO, SAC, DQN, TD3, DDPG, A2C, etc.), creating custom Gym environments, implementing callbacks for monitoring and control, using vectorized environments for parallel training, and integrating with deep RL workflows. This skill should be used when users request RL algorithm implementation, agent training, environment design, or RL experimentation.
gemini-imagegen
Generate and edit images using the Gemini API (Nano Banana Pro). Use this skill when creating images from text prompts, editing existing images, applying style transfers, generating logos with text, creating stickers, product mockups, or any image generation/manipulation task. Supports text-to-image, image editing, multi-turn refinement, and composition from multiple reference images.
cardiology-tweet-writer
Generate scientifically accurate, engaging cardiology tweets for thought leadership. Use when creating social media content for a cardiologist targeting patients, health enthusiasts, health optimizers, people with lifestyle diseases, and caregivers. Produces 10 tweets per batch using permutations of cardiology seed ideas and modifiers. Incorporates feedback to improve output quality over time.
content-reflection
Pre-publication quality assurance for cardiology thought leadership content. Use AFTER any content is drafted to evaluate scientific rigor, voice authenticity, positioning alignment, audience calibration, and credibility risk. Provides structured critique with specific revision suggestions. Works on any content type—tweets, threads, newsletters, editorials, video scripts.
markitdown
Convert files and office documents to Markdown. Supports PDF, DOCX, PPTX, XLSX, images (with OCR), audio (with transcription), HTML, CSV, JSON, XML, ZIP, YouTube URLs, EPubs and more.
cardiology-visual-system
Unified visual content system for cardiology thought leadership. Automatically routes requests to the optimal tool—Fal.ai for blog imagery, Gemini for infographics, Mermaid for flowcharts/pathways, Marp for slides, Plotly for data visualization. One skill handles all visual needs within Claude Code.
scientific-brainstorming
Research ideation partner. Generate hypotheses, explore interdisciplinary connections, challenge assumptions, develop methodologies, identify research gaps, for creative scientific problem-solving.
cremieux-cardio
Write data-driven, evidence-first long-form Twitter posts on medicine and cardiology. Use when the user wants to: (1) Create thought leadership content in the style of Eric Topol, Peter Attia, Andrew Huberman, or Rhonda Patrick, (2) Present clinical evidence with charts, data, and Q1 journal citations for educated non-specialist audiences, (3) Write confident, matter-of-fact medical content that is rigorous without being inaccessible, (4) Explain trials, drugs, or medical phenomena using data visualization and systematic evidence review, (5) Build authority through methodological rigor and clear conclusions backed by evidence. NOT for newsletters or Substack. For Twitter long-form posts only.
article-extractor
Extract clean article content from URLs (blog posts, articles, tutorials) and save as readable text. Use when user wants to download, extract, or save an article/blog post from a URL without ads, navigation, or clutter.
pyopenms
Python interface to OpenMS for mass spectrometry data analysis. Use for LC-MS/MS proteomics and metabolomics workflows including file handling (mzML, mzXML, mzTab, FASTA, pepXML, protXML, mzIdentML), signal processing, feature detection, peptide identification, and quantitative analysis. Apply when working with mass spectrometry data, analyzing proteomics experiments, or processing metabolomics datasets.
etetoolkit
Phylogenetic tree toolkit (ETE). Tree manipulation (Newick/NHX), evolutionary event detection, orthology/paralogy, NCBI taxonomy, visualization (PDF/SVG), for phylogenomics.
gget
CLI/Python toolkit for rapid bioinformatics queries. Preferred for quick BLAST searches. Access to 20+ databases: gene info (Ensembl/UniProt), AlphaFold, ARCHS4, Enrichr, OpenTargets, COSMIC, genome downloads. For advanced BLAST/batch processing, use biopython. For multi-database integration, use bioservices.
hypothesis-generation
Generate testable hypotheses. Formulate from observations, design experiments, explore competing explanations, develop predictions, propose mechanisms, for scientific inquiry across domains.
pdb-database
Access RCSB PDB for 3D protein/nucleic acid structures. Search by text/sequence/structure, download coordinates (PDB/mmCIF), retrieve metadata, for structural biology and drug discovery.
protocolsio-integration
Integration with protocols.io API for managing scientific protocols. This skill should be used when working with protocols.io to search, create, update, or publish protocols; manage protocol steps and materials; handle discussions and comments; organize workspaces; upload and manage files; or integrate protocols.io functionality into workflows. Applicable for protocol discovery, collaborative protocol development, experiment tracking, lab protocol management, and scientific documentation.
geo-database
Access NCBI GEO for gene expression/genomics data. Search/download microarray and RNA-seq datasets (GSE, GSM, GPL), retrieve SOFT/Matrix files, for transcriptomics and expression analysis.
opentargets-database
Query Open Targets Platform for target-disease associations, drug target discovery, tractability/safety data, genetics/omics evidence, known drugs, for therapeutic target identification.
simpy
Process-based discrete-event simulation framework in Python. Use this skill when building simulations of systems with processes, queues, resources, and time-based events such as manufacturing systems, service operations, network traffic, logistics, or any system where entities interact with shared resources over time.
uniprot-database
Direct REST API access to UniProt. Protein searches, FASTA retrieval, ID mapping, Swiss-Prot/TrEMBL. For Python workflows with multiple databases, prefer bioservices (unified interface to 40+ services). Use this for direct HTTP/REST work or UniProt-specific control.
qutip
Quantum mechanics simulations and analysis using QuTiP (Quantum Toolbox in Python). Use when working with quantum systems including: (1) quantum states (kets, bras, density matrices), (2) quantum operators and gates, (3) time evolution and dynamics (Schrödinger, master equations, Monte Carlo), (4) open quantum systems with dissipation, (5) quantum measurements and entanglement, (6) visualization (Bloch sphere, Wigner functions), (7) steady states and correlation functions, or (8) advanced methods (Floquet theory, HEOM, stochastic solvers). Handles both closed and open quantum systems across various domains including quantum optics, quantum computing, and condensed matter physics.
exploratory-data-analysis
Perform comprehensive exploratory data analysis on scientific data files across 200+ file formats. This skill should be used when analyzing any scientific data file to understand its structure, content, quality, and characteristics. Automatically detects file type and generates detailed markdown reports with format-specific analysis, quality metrics, and downstream analysis recommendations. Covers chemistry, bioinformatics, microscopy, spectroscopy, proteomics, metabolomics, and general scientific data formats.
histolab
Digital pathology image processing toolkit for whole slide images (WSI). Use this skill when working with histopathology slides, processing H&E or IHC stained tissue images, extracting tiles from gigapixel pathology images, detecting tissue regions, segmenting tissue masks, or preparing datasets for computational pathology deep learning pipelines. Applies to WSI formats (SVS, TIFF, NDPI), tile-based analysis, and histological image preprocessing workflows.
cosmic-database
Access COSMIC cancer mutation database. Query somatic mutations, Cancer Gene Census, mutational signatures, gene fusions, for cancer research and precision oncology. Requires authentication.
pymc-bayesian-modeling
Bayesian modeling with PyMC. Build hierarchical models, MCMC (NUTS), variational inference, LOO/WAIC comparison, posterior checks, for probabilistic programming and inference.
metabolomics-workbench-database
Access NIH Metabolomics Workbench via REST API (4,200+ studies). Query metabolites, RefMet nomenclature, MS/NMR data, m/z searches, study metadata, for metabolomics and biomarker discovery.
scvi-tools
This skill should be used when working with single-cell omics data analysis using scvi-tools, including scRNA-seq, scATAC-seq, CITE-seq, spatial transcriptomics, and other single-cell modalities. Use this skill for probabilistic modeling, batch correction, dimensionality reduction, differential expression, cell type annotation, multimodal integration, and spatial analysis tasks.
biomni
Autonomous biomedical AI agent framework for executing complex research tasks across genomics, drug discovery, molecular biology, and clinical analysis. Use this skill when conducting multi-step biomedical research including CRISPR screening design, single-cell RNA-seq analysis, ADMET prediction, GWAS interpretation, rare disease diagnosis, or lab protocol optimization. Leverages LLM reasoning with code execution and integrated biomedical databases.
rdkit
Cheminformatics toolkit for fine-grained molecular control. SMILES/SDF parsing, descriptors (MW, LogP, TPSA), fingerprints, substructure search, 2D/3D generation, similarity, reactions. For standard workflows with simpler interface, use datamol (wrapper around RDKit). Use rdkit for advanced control, custom sanitization, specialized algorithms.
labarchive-integration
Electronic lab notebook API integration. Access notebooks, manage entries/attachments, backup notebooks, integrate with Protocols.io/Jupyter/REDCap, for programmatic ELN workflows.
openalex-database
Query and analyze scholarly literature using the OpenAlex database. This skill should be used when searching for academic papers, analyzing research trends, finding works by authors or institutions, tracking citations, discovering open access publications, or conducting bibliometric analysis across 240M+ scholarly works. Use for literature searches, research output analysis, citation analysis, and academic database queries.
biorxiv-database
Efficient database search tool for bioRxiv preprint server. Use this skill when searching for life sciences preprints by keywords, authors, date ranges, or categories, retrieving paper metadata, downloading PDFs, or conducting literature reviews.
scientific-slides
Build slide decks and presentations for research talks. Use this for making PowerPoint slides, conference presentations, seminar talks, research presentations, thesis defense slides, or any scientific talk. Provides slide structure, design templates, timing guidance, and visual validation. Works with PowerPoint and LaTeX Beamer.
literature-review
Conduct comprehensive, systematic literature reviews using multiple academic databases (PubMed, arXiv, bioRxiv, Semantic Scholar, etc.). This skill should be used when conducting systematic literature reviews, meta-analyses, research synthesis, or comprehensive literature searches across biomedical, scientific, and technical domains. Creates professionally formatted markdown documents and PDFs with verified citations in multiple citation styles (APA, Nature, Vancouver, etc.).
pytdc
Therapeutics Data Commons. AI-ready drug discovery datasets (ADME, toxicity, DTI), benchmarks, scaffold splits, molecular oracles, for therapeutic ML and pharmacological prediction.
medchem
Medicinal chemistry filters. Apply drug-likeness rules (Lipinski, Veber), PAINS filters, structural alerts, complexity metrics, for compound prioritization and library filtering.
diffdock
Diffusion-based molecular docking. Predict protein-ligand binding poses from PDB/SMILES, confidence scores, virtual screening, for structure-based drug design. Not for affinity prediction.
mcp-management
Manage Model Context Protocol (MCP) servers - discover, analyze, and execute tools/prompts/resources from configured MCP servers. Use when working with MCP integrations, need to discover available MCP capabilities, filter MCP tools for specific tasks, execute MCP tools programmatically, access MCP prompts/resources, or implement MCP client functionality. Supports intelligent tool selection, multi-server management, and context-efficient capability discovery.
aeon
This skill should be used for time series machine learning tasks including classification, regression, clustering, forecasting, anomaly detection, segmentation, and similarity search. Use when working with temporal data, sequential patterns, or time-indexed observations requiring specialized algorithms beyond standard ML approaches. Particularly suited for univariate and multivariate time series analysis with scikit-learn compatible APIs.
matchms
Mass spectrometry analysis. Process mzML/MGF/MSP, spectral similarity (cosine, modified cosine), metadata harmonization, compound ID, for metabolomics and MS data processing.
pennylane
Cross-platform Python library for quantum computing, quantum machine learning, and quantum chemistry. Enables building and training quantum circuits with automatic differentiation, seamless integration with PyTorch/JAX/TensorFlow, and device-independent execution across simulators and quantum hardware (IBM, Amazon Braket, Google, Rigetti, IonQ, etc.). Use when working with quantum circuits, variational quantum algorithms (VQE, QAOA), quantum neural networks, hybrid quantum-classical models, molecular simulations, quantum chemistry calculations, or any quantum computing tasks requiring gradient-based optimization, hardware-agnostic programming, or quantum machine learning workflows.
hmdb-database
Access Human Metabolome Database (220K+ metabolites). Search by name/ID/structure, retrieve chemical properties, biomarker data, NMR/MS spectra, pathways, for metabolomics and identification.
biopython
Primary Python toolkit for molecular biology. Preferred for Python-based PubMed/NCBI queries (Bio.Entrez), sequence manipulation, file parsing (FASTA, GenBank, FASTQ, PDB), advanced BLAST workflows, structures, phylogenetics. For quick BLAST, use gget. For direct REST API, use pubmed-database.
market-research-reports
Generate comprehensive market research reports (50+ pages) in the style of top consulting firms (McKinsey, BCG, Gartner). Features professional LaTeX formatting, extensive visual generation with scientific-schematics and generate-image, deep integration with research-lookup for data gathering, and multi-framework strategic analysis including Porter's Five Forces, PESTLE, SWOT, TAM/SAM/SOM, and BCG Matrix.
cellxgene-census
Query CZ CELLxGENE Census (61M+ cells). Filter by cell type/tissue/disease, retrieve expression data, integrate with scanpy/PyTorch, for population-scale single-cell analysis.
citation-management
Comprehensive citation management for academic research. Search Google Scholar and PubMed for papers, extract accurate metadata, validate citations, and generate properly formatted BibTeX entries. This skill should be used when you need to find papers, verify citation information, convert DOIs to BibTeX, or ensure reference accuracy in scientific writing.
zinc-database
Access ZINC (230M+ purchasable compounds). Search by ZINC ID/SMILES, similarity searches, 3D-ready structures for docking, analog discovery, for virtual screening and drug discovery.
astropy
Comprehensive Python library for astronomy and astrophysics. This skill should be used when working with astronomical data including celestial coordinates, physical units, FITS files, cosmological calculations, time systems, tables, world coordinate systems (WCS), and astronomical data analysis. Use when tasks involve coordinate transformations, unit conversions, FITS file manipulation, cosmological distance calculations, time scale conversions, or astronomical data processing.
opentrons-integration
Lab automation platform for Flex/OT-2 robots. Write Protocol API v2 protocols, liquid handling, hardware modules (heater-shaker, thermocycler), labware management, for automated pipetting workflows.
adaptyv
Cloud laboratory platform for automated protein testing and validation. Use when designing proteins and needing experimental validation including binding assays, expression testing, thermostability measurements, enzyme activity assays, or protein sequence optimization. Also use for submitting experiments via API, tracking experiment status, downloading results, optimizing protein sequences for better expression using computational tools (NetSolP, SoluProt, SolubleMPNN, ESM), or managing protein design workflows with wet-lab validation.
pufferlib
This skill should be used when working with reinforcement learning tasks including high-performance RL training, custom environment development, vectorized parallel simulation, multi-agent systems, or integration with existing RL environments (Gymnasium, PettingZoo, Atari, Procgen, etc.). Use this skill for implementing PPO training, creating PufferEnv environments, optimizing RL performance, or developing policies with CNNs/LSTMs.
statistical-analysis
Statistical analysis toolkit. Hypothesis tests (t-test, ANOVA, chi-square), regression, correlation, Bayesian stats, power analysis, assumption checks, APA reporting, for academic research.
pydeseq2
Differential gene expression analysis (Python DESeq2). Identify DE genes from bulk RNA-seq counts, Wald tests, FDR correction, volcano/MA plots, for RNA-seq analysis.
alphafold-database
Access AlphaFold's 200M+ AI-predicted protein structures. Retrieve structures by UniProt ID, download PDB/mmCIF files, analyze confidence metrics (pLDDT, PAE), for drug discovery and structural biology.
dnanexus-integration
DNAnexus cloud genomics platform. Build apps/applets, manage data (upload/download), dxpy Python SDK, run workflows, FASTQ/BAM/VCF, for genomics pipeline development and execution.
neurokit2
Comprehensive biosignal processing toolkit for analyzing physiological data including ECG, EEG, EDA, RSP, PPG, EMG, and EOG signals. Use this skill when processing cardiovascular signals, brain activity, electrodermal responses, respiratory patterns, muscle activity, or eye movements. Applicable for heart rate variability analysis, event-related potentials, complexity measures, autonomic nervous system assessment, psychophysiology research, and multi-modal physiological signal integration.
vaex
Use this skill for processing and analyzing large tabular datasets (billions of rows) that exceed available RAM. Vaex excels at out-of-core DataFrame operations, lazy evaluation, fast aggregations, efficient visualization of big data, and machine learning on large datasets. Apply when users need to work with large CSV/HDF5/Arrow/Parquet files, perform fast statistics on massive datasets, create visualizations of big data, or build ML pipelines that don't fit in memory.
umap-learn
UMAP dimensionality reduction. Fast nonlinear manifold learning for 2D/3D visualization, clustering preprocessing (HDBSCAN), supervised/parametric UMAP, for high-dimensional data.
peer-review
Systematic peer review toolkit. Evaluate methodology, statistics, design, reproducibility, ethics, figure integrity, reporting standards, for manuscript and grant review across disciplines.
pylabrobot
Laboratory automation toolkit for controlling liquid handlers, plate readers, pumps, heater shakers, incubators, centrifuges, and analytical equipment. Use this skill when automating laboratory workflows, programming liquid handling robots (Hamilton STAR, Opentrons OT-2, Tecan EVO), integrating lab equipment, managing deck layouts and resources (plates, tips, containers), reading plates, or creating reproducible laboratory protocols. Applicable for both simulated protocols and physical hardware control.
polars
Fast DataFrame library (Apache Arrow). Select, filter, group_by, joins, lazy evaluation, CSV/Parquet I/O, expression API, for high-performance data analysis workflows.
datacommons-client
Work with Data Commons, a platform providing programmatic access to public statistical data from global sources. Use this skill when working with demographic data, economic indicators, health statistics, environmental data, or any public datasets available through Data Commons. Applicable for querying population statistics, GDP figures, unemployment rates, disease prevalence, geographic entity resolution, and exploring relationships between statistical entities.
fda-database
Query openFDA API for drugs, devices, adverse events, recalls, regulatory submissions (510k, PMA), substance identification (UNII), for FDA regulatory data analysis and safety research.
pysam
Genomic file toolkit. Read/write SAM/BAM/CRAM alignments, VCF/BCF variants, FASTA/FASTQ sequences, extract regions, calculate coverage, for NGS data processing pipelines.
modal
Run Python code in the cloud with serverless containers, GPUs, and autoscaling. Use when deploying ML models, running batch processing jobs, scheduling compute-intensive tasks, or serving APIs that require GPU acceleration or dynamic scaling.
clinpgx-database
Access ClinPGx pharmacogenomics data (successor to PharmGKB). Query gene-drug interactions, CPIC guidelines, allele functions, for precision medicine and genotype-guided dosing decisions.
scikit-bio
Biological data toolkit. Sequence analysis, alignments, phylogenetic trees, diversity metrics (alpha/beta, UniFrac), ordination (PCoA), PERMANOVA, FASTA/Newick I/O, for microbiome analysis.
pydicom
Python library for working with DICOM (Digital Imaging and Communications in Medicine) files. Use this skill when reading, writing, or modifying medical imaging data in DICOM format, extracting pixel data from medical images (CT, MRI, X-ray, ultrasound), anonymizing DICOM files, working with DICOM metadata and tags, converting DICOM images to other formats, handling compressed DICOM data, or processing medical imaging datasets. Applies to tasks involving medical image analysis, PACS systems, radiology workflows, and healthcare imaging applications.
geniml
This skill should be used when working with genomic interval data (BED files) for machine learning tasks. Use for training region embeddings (Region2Vec, BEDspace), single-cell ATAC-seq analysis (scEmbed), building consensus peaks (universes), or any ML-based analysis of genomic regions. Applies to BED file collections, scATAC-seq data, chromatin accessibility datasets, and region-based genomic feature learning.
pymatgen
Materials science toolkit. Crystal structures (CIF, POSCAR), phase diagrams, band structure, DOS, Materials Project integration, format conversion, for computational materials science.
pubchem-database
Query PubChem via PUG-REST API/PubChemPy (110M+ compounds). Search by name/CID/SMILES, retrieve properties, similarity/substructure searches, bioactivity, for cheminformatics.
matplotlib
Foundational plotting library. Create line plots, scatter, bar, histograms, heatmaps, 3D, subplots, export PNG/PDF/SVG, for scientific visualization and publication figures.
pubmed-database
Direct REST API access to PubMed. Advanced Boolean/MeSH queries, E-utilities API, batch processing, citation management. For Python workflows, prefer biopython (Bio.Entrez). Use this for direct HTTP/REST work or custom API implementations.
gtars
High-performance toolkit for genomic interval analysis in Rust with Python bindings. Use when working with genomic regions, BED files, coverage tracks, overlap detection, tokenization for ML models, or fragment analysis in computational genomics and machine learning applications.
scientific-schematics
Create publication-quality scientific diagrams using Nano Banana Pro AI with smart iterative refinement. Uses Gemini 3 Pro for quality review. Only regenerates if quality is below threshold for your document type. Specialized in neural network architectures, system diagrams, flowcharts, biological pathways, and complex scientific visualizations.
scientific-visualization
Create publication figures with matplotlib/seaborn/plotly. Multi-panel layouts, error bars, significance markers, colorblind-safe, export PDF/EPS/TIFF, for journal-ready scientific plots.
ensembl-database
Query Ensembl genome database REST API for 250+ species. Gene lookups, sequence retrieval, variant analysis, comparative genomics, orthologs, VEP predictions, for genomic research.
benchling-integration
Benchling R&D platform integration. Access registry (DNA, proteins), inventory, ELN entries, workflows via API, build Benchling Apps, query Data Warehouse, for lab data management automation.
molfeat
Molecular featurization for ML (100+ featurizers). ECFP, MACCS, descriptors, pretrained models (ChemBERTa), convert SMILES to features, for QSAR and molecular ML.
xlsx
Spreadsheet toolkit (.xlsx/.csv). Create/edit with formulas/formatting, analyze data, visualization, recalculate formulas, for spreadsheet processing and analysis.
string-database
Query STRING API for protein-protein interactions (59M proteins, 20B interactions). Network analysis, GO/KEGG enrichment, interaction discovery, 5000+ species, for systems biology.
clinical-decision-support
Generate professional clinical decision support (CDS) documents for pharmaceutical and clinical research settings, including patient cohort analyses (biomarker-stratified with outcomes) and treatment recommendation reports (evidence-based guidelines with decision algorithms). Supports GRADE evidence grading, statistical analysis (hazard ratios, survival curves, waterfall plots), biomarker integration, and regulatory compliance. Outputs publication-ready LaTeX/PDF format optimized for drug development, clinical research, and evidence synthesis.
sympy
Use this skill when working with symbolic mathematics in Python. This skill should be used for symbolic computation tasks including solving equations algebraically, performing calculus operations (derivatives, integrals, limits), manipulating algebraic expressions, working with matrices symbolically, physics calculations, number theory problems, geometry computations, and generating executable code from mathematical expressions. Apply this skill when the user needs exact symbolic results rather than numerical approximations, or when working with mathematical formulas that contain variables and parameters.
pathml
Computational pathology toolkit for analyzing whole-slide images (WSI) and multiparametric imaging data. Use this skill when working with histopathology slides, H&E stained images, multiplex immunofluorescence (CODEX, Vectra), spatial proteomics, nucleus detection/segmentation, tissue graph construction, or training ML models on pathology data. Supports 160+ slide formats including Aperio SVS, NDPI, DICOM, OME-TIFF for digital pathology workflows.
paper-2-web
This skill should be used when converting academic papers into promotional and presentation formats including interactive websites (Paper2Web), presentation videos (Paper2Video), and conference posters (Paper2Poster). Use this skill for tasks involving paper dissemination, conference preparation, creating explorable academic homepages, generating video abstracts, or producing print-ready posters from LaTeX or PDF sources.
research-lookup
Look up current research information using Perplexity's Sonar Pro Search or Sonar Reasoning Pro models through OpenRouter. Automatically selects the best model based on query complexity. Search academic papers, recent studies, technical documentation, and general research information with citations.
transformers
This skill should be used when working with pre-trained transformer models for natural language processing, computer vision, audio, or multimodal tasks. Use for text generation, classification, question answering, translation, summarization, image classification, object detection, speech recognition, and fine-tuning models on custom datasets.
arboreto
Infer gene regulatory networks (GRNs) from gene expression data using scalable algorithms (GRNBoost2, GENIE3). Use when analyzing transcriptomics data (bulk RNA-seq, single-cell RNA-seq) to identify transcription factor-target gene relationships and regulatory interactions. Supports distributed computation for large-scale datasets.
anndata
This skill should be used when working with annotated data matrices in Python, particularly for single-cell genomics analysis, managing experimental measurements with metadata, or handling large-scale biological datasets. Use when tasks involve AnnData objects, h5ad files, single-cell RNA-seq data, or integration with scanpy/scverse tools.
statsmodels
Statistical modeling toolkit. OLS, GLM, logistic, ARIMA, time series, hypothesis tests, diagnostics, AIC/BIC, for rigorous statistical inference and econometric analysis.
deeptools
NGS analysis toolkit. BAM to bigWig conversion, QC (correlation, PCA, fingerprints), heatmaps/profiles (TSS, peaks), for ChIP-seq, RNA-seq, ATAC-seq visualization.
uspto-database
Access USPTO APIs for patent/trademark searches, examination history (PEDS), assignments, citations, office actions, TSDR, for IP analysis and prior art searches.
seaborn
Statistical visualization. Scatter, box, violin, heatmaps, pair plots, regression, correlation matrices, KDE, faceted plots, for exploratory analysis and publication figures.
latchbio-integration
Latch platform for bioinformatics workflows. Build pipelines with Latch SDK, @workflow/@task decorators, deploy serverless workflows, LatchFile/LatchDir, Nextflow/Snakemake integration.
datamol
Pythonic wrapper around RDKit with simplified interface and sensible defaults. Preferred for standard drug discovery: SMILES parsing, standardization, descriptors, fingerprints, clustering, 3D conformers, parallel processing. Returns native rdkit.Chem.Mol objects. For advanced control or custom parameters, use rdkit directly.
torch-geometric
Graph Neural Networks (PyG). Node/graph classification, link prediction, GCN, GAT, GraphSAGE, heterogeneous graphs, molecular property prediction, for geometric deep learning.
geopandas
Python library for working with geospatial vector data including shapefiles, GeoJSON, and GeoPackage files. Use when working with geographic data for spatial analysis, geometric operations, coordinate transformations, spatial joins, overlay operations, choropleth mapping, or any task involving reading/writing/analyzing vector geographic data. Supports PostGIS databases, interactive maps, and integration with matplotlib/folium/cartopy. Use for tasks like buffer analysis, spatial joins between datasets, dissolving boundaries, clipping data, calculating areas/distances, reprojecting coordinate systems, creating maps, or converting between spatial file formats.
gene-database
Query NCBI Gene via E-utilities/Datasets API. Search by symbol/ID, retrieve gene info (RefSeqs, GO, locations, phenotypes), batch lookups, for gene annotation and functional analysis.
kegg-database
Direct REST API access to KEGG (academic use only). Pathway analysis, gene-pathway mapping, metabolic pathways, drug interactions, ID conversion. For Python workflows with multiple databases, prefer bioservices. Use this for direct HTTP/REST work or KEGG-specific control.
pyhealth
Comprehensive healthcare AI toolkit for developing, testing, and deploying machine learning models with clinical data. This skill should be used when working with electronic health records (EHR), clinical prediction tasks (mortality, readmission, drug recommendation), medical coding systems (ICD, NDC, ATC), physiological signals (EEG, ECG), healthcare datasets (MIMIC-III/IV, eICU, OMOP), or implementing deep learning models for healthcare applications (RETAIN, SafeDrug, Transformer, GNN).
drugbank-database
Access and analyze comprehensive drug information from the DrugBank database including drug properties, interactions, targets, pathways, chemical structures, and pharmacology data. This skill should be used when working with pharmaceutical data, drug discovery research, pharmacology studies, drug-drug interaction analysis, target identification, chemical similarity searches, ADMET predictions, or any task requiring detailed drug and drug target information from DrugBank.
ena-database
Access European Nucleotide Archive via API/FTP. Retrieve DNA/RNA sequences, raw reads (FASTQ), genome assemblies by accession, for genomics and bioinformatics pipelines. Supports multiple formats.
omero-integration
Microscopy data management platform. Access images via Python, retrieve datasets, analyze pixels, manage ROIs/annotations, batch processing, for high-content screening and microscopy workflows.
scikit-survival
Comprehensive toolkit for survival analysis and time-to-event modeling in Python using scikit-survival. Use this skill when working with censored survival data, performing time-to-event analysis, fitting Cox models, Random Survival Forests, Gradient Boosting models, or Survival SVMs, evaluating survival predictions with concordance index or Brier score, handling competing risks, or implementing any survival analysis workflow with the scikit-survival library.
research-grants
Write competitive research proposals for NSF, NIH, DOE, and DARPA. Agency-specific formatting, review criteria, budget preparation, broader impacts, significance statements, innovation narratives, and compliance with submission requirements.
lamindb
This skill should be used when working with LaminDB, an open-source data framework for biology that makes data queryable, traceable, reproducible, and FAIR. Use when managing biological datasets (scRNA-seq, spatial, flow cytometry, etc.), tracking computational workflows, curating and validating data with biological ontologies, building data lakehouses, or ensuring data lineage and reproducibility in biological research. Covers data management, annotation, ontologies (genes, cell types, diseases, tissues), schema validation, integrations with workflow managers (Nextflow, Snakemake) and MLOps platforms (W&B, MLflow), and deployment strategies.
plotly
Interactive scientific and statistical data visualization library for Python. Use when creating charts, plots, or visualizations including scatter plots, line charts, bar charts, heatmaps, 3D plots, geographic maps, statistical distributions, financial charts, and dashboards. Supports both quick visualizations (Plotly Express) and fine-grained customization (graph objects). Outputs interactive HTML or static images (PNG, PDF, SVG).
zarr-python
Chunked N-D arrays for cloud storage. Compressed arrays, parallel I/O, S3/GCS integration, NumPy/Dask/Xarray compatible, for large-scale scientific computing pipelines.
scanpy
Single-cell RNA-seq analysis. Load .h5ad/10X data, QC, normalization, PCA/UMAP/t-SNE, Leiden clustering, marker genes, cell type annotation, trajectory, for scRNA-seq analysis.
pytorch-lightning
Deep learning framework (PyTorch Lightning). Organize PyTorch code into LightningModules, configure Trainers for multi-GPU/TPU, implement data pipelines, callbacks, logging (W&B, TensorBoard), distributed training (DDP, FSDP, DeepSpeed), for scalable neural network training.
esm
Comprehensive toolkit for protein language models including ESM3 (generative multimodal protein design across sequence, structure, and function) and ESM C (efficient protein embeddings and representations). Use this skill when working with protein sequences, structures, or function prediction; designing novel proteins; generating protein embeddings; performing inverse folding; or conducting protein engineering tasks. Supports both local model usage and cloud-based Forge API for scalable inference.
flowio
Parse FCS (Flow Cytometry Standard) files v2.0-3.1. Extract events as NumPy arrays, read metadata/channels, convert to CSV/DataFrame, for flow cytometry data preprocessing.
reactome-database
Query Reactome REST API for pathway analysis, enrichment, gene-pathway mapping, disease pathways, molecular interactions, expression analysis, for systems biology studies.
qiskit
Comprehensive quantum computing toolkit for building, optimizing, and executing quantum circuits. Use when working with quantum algorithms, simulations, or quantum hardware including (1) Building quantum circuits with gates and measurements, (2) Running quantum algorithms (VQE, QAOA, Grover), (3) Transpiling/optimizing circuits for hardware, (4) Executing on IBM Quantum or other providers, (5) Quantum chemistry and materials science, (6) Quantum machine learning, (7) Visualizing circuits and results, or (8) Any quantum computing development task.
clinvar-database
Query NCBI ClinVar for variant clinical significance. Search by gene/position, interpret pathogenicity classifications, access via E-utilities API or FTP, annotate VCFs, for genomic medicine.
dask
Parallel/distributed computing. Scale pandas/NumPy beyond memory, parallel DataFrames/Arrays, multi-file processing, task graphs, for larger-than-RAM datasets and parallel workflows.
cirq
Quantum computing framework for building, simulating, optimizing, and executing quantum circuits. Use this skill when working with quantum algorithms, quantum circuit design, quantum simulation (noiseless or noisy), running on quantum hardware (Google, IonQ, AQT, Pasqal), circuit optimization and compilation, noise modeling and characterization, or quantum experiments and benchmarking (VQE, QAOA, QPE, randomized benchmarking).
get-available-resources
This skill should be used at the start of any computationally intensive scientific task to detect and report available system resources (CPU cores, GPUs, memory, disk space). It creates a JSON file with resource information and strategic recommendations that inform computational approach decisions such as whether to use parallel processing (joblib, multiprocessing), out-of-core computing (Dask, Zarr), GPU acceleration (PyTorch, JAX), or memory-efficient strategies. Use this skill before running analyses, training models, processing large datasets, or any task where resource constraints matter.
cobrapy
Constraint-based metabolic modeling (COBRA). FBA, FVA, gene knockouts, flux sampling, SBML models, for systems biology and metabolic engineering analysis.
venue-templates
Access comprehensive LaTeX templates, formatting requirements, and submission guidelines for major scientific publication venues (Nature, Science, PLOS, IEEE, ACM), academic conferences (NeurIPS, ICML, CVPR, CHI), research posters, and grant proposals (NSF, NIH, DOE, DARPA). This skill should be used when preparing manuscripts for journal submission, conference papers, research posters, or grant proposals and need venue-specific formatting requirements and templates.
docx
Document toolkit (.docx). Create/edit documents, tracked changes, comments, formatting preservation, text extraction, for professional document processing.
denario
Multiagent AI system for scientific research assistance that automates research workflows from data analysis to publication. This skill should be used when generating research ideas from datasets, developing research methodologies, executing computational experiments, performing literature searches, or generating publication-ready papers in LaTeX format. Supports end-to-end research pipelines with customizable agent orchestration.
chembl-database
Query ChEMBL's bioactive molecules and drug discovery data. Search compounds by structure/properties, retrieve bioactivity data (IC50, Ki), find inhibitors, perform SAR studies, for medicinal chemistry.
gwas-database
Query NHGRI-EBI GWAS Catalog for SNP-trait associations. Search variants by rs ID, disease/trait, gene, retrieve p-values and summary statistics, for genetic epidemiology and polygenic risk scores.
torchdrug
Graph-based drug discovery toolkit. Molecular property prediction (ADMET), protein modeling, knowledge graph reasoning, molecular generation, retrosynthesis, GNNs (GIN, GAT, SchNet), 40+ datasets, for PyTorch-based ML on molecules, proteins, and biomedical graphs.
scientific-writing
Core skill for the deep research and writing tool. Write scientific manuscripts in full paragraphs (never bullet points). Use two-stage process: (1) create section outlines with key points using research-lookup, (2) convert to flowing prose. IMRAD structure, citations (APA/AMA/Vancouver), figures/tables, reporting guidelines (CONSORT/STROBE/PRISMA), for research papers and journal submissions.
scikit-learn
Machine learning in Python with scikit-learn. Use when working with supervised learning (classification, regression), unsupervised learning (clustering, dimensionality reduction), model evaluation, hyperparameter tuning, preprocessing, or building ML pipelines. Provides comprehensive reference documentation for algorithms, preprocessing techniques, pipelines, and best practices.
deepchem
Molecular machine learning toolkit. Property prediction (ADMET, toxicity), GNNs (GCN, MPNN), MoleculeNet benchmarks, pretrained models, featurization, for drug discovery ML.
shap
Model interpretability and explainability using SHAP (SHapley Additive exPlanations). Use this skill when explaining machine learning model predictions, computing feature importance, generating SHAP plots (waterfall, beeswarm, bar, scatter, force, heatmap), debugging models, analyzing model bias or fairness, comparing models, or implementing explainable AI. Works with tree-based models (XGBoost, LightGBM, Random Forest), deep learning (TensorFlow, PyTorch), linear models, and any black-box model.
hypogenic
Automated hypothesis generation and testing using large language models. Use this skill when generating scientific hypotheses from datasets, combining literature insights with empirical data, testing hypotheses against observational data, or conducting systematic hypothesis exploration for research discovery in domains like deception detection, AI content detection, mental health analysis, or other empirical research tasks.
clinicaltrials-database
Query ClinicalTrials.gov via API v2. Search trials by condition, drug, location, status, or phase. Retrieve trial details by NCT ID, export data, for clinical research and patient matching.
content-research-writer
Assists in writing high-quality content by conducting research, adding citations, improving hooks, iterating on outlines, and providing real-time feedback on each section. Transforms your writing process from solo effort to collaborative partnership.
networkx
Comprehensive toolkit for creating, analyzing, and visualizing complex networks and graphs in Python. Use when working with network/graph data structures, analyzing relationships between entities, computing graph algorithms (shortest paths, centrality, clustering), detecting communities, generating synthetic networks, or visualizing network topologies. Applicable to social networks, biological networks, transportation systems, citation networks, and any domain involving pairwise relationships.
fluidsim
Framework for computational fluid dynamics simulations using Python. Use when running fluid dynamics simulations including Navier-Stokes equations (2D/3D), shallow water equations, stratified flows, or when analyzing turbulence, vortex dynamics, or geophysical flows. Provides pseudospectral methods with FFT, HPC support, and comprehensive output analysis.
pymoo
Multi-objective optimization framework. NSGA-II, NSGA-III, MOEA/D, Pareto fronts, constraint handling, benchmarks (ZDT, DTLZ), for engineering design and optimization problems.
clinical-reports
Write comprehensive clinical reports including case reports (CARE guidelines), diagnostic reports (radiology/pathology/lab), clinical trial reports (ICH-E3, SAE, CSR), and patient documentation (SOAP, H&P, discharge summaries). Full support with templates, regulatory compliance (HIPAA, FDA, ICH-GCP), and validation tools.
scientific-critical-thinking
Evaluate research rigor. Assess methodology, experimental design, statistical validity, biases, confounding, evidence quality (GRADE, Cochrane ROB), for critical analysis of scientific claims.
brenda-database
Access BRENDA enzyme database via SOAP API. Retrieve kinetic parameters (Km, kcat), reaction equations, organism data, and substrate-specific enzyme information for biochemical research and metabolic pathway analysis.