skills/nicepkg/ai-workflow/backtest-expert

backtest-expert

SKILL.md

Backtest Expert

Systematic approach to backtesting trading strategies based on professional methodology that prioritizes robustness over optimistic results.

Core Philosophy

Goal: Find strategies that "break the least", not strategies that "profit the most" on paper.

Principle: Add friction, stress test assumptions, and see what survives. If a strategy holds up under pessimistic conditions, it's more likely to work in live trading.

When to Use This Skill

Use this skill when:

  • Developing or validating systematic trading strategies
  • Evaluating whether a trading idea is robust enough for live implementation
  • Troubleshooting why a backtest might be misleading
  • Learning proper backtesting methodology
  • Avoiding common pitfalls (curve-fitting, look-ahead bias, survivorship bias)
  • Assessing parameter sensitivity and regime dependence
  • Setting realistic expectations for slippage and execution costs

Backtesting Workflow

1. State the Hypothesis

Define the edge in one sentence.

Example: "Stocks that gap up >3% on earnings and pull back to previous day's close within first hour provide mean-reversion opportunity."

If you can't articulate the edge clearly, don't proceed to testing.

2. Codify Rules with Zero Discretion

Define with complete specificity:

  • Entry: Exact conditions, timing, price type
  • Exit: Stop loss, profit target, time-based exit
  • Position sizing: Fixed $$, % of portfolio, volatility-adjusted
  • Filters: Market cap, volume, sector, volatility conditions
  • Universe: What instruments are eligible

Critical: No subjective judgment allowed. Every decision must be rule-based and unambiguous.

3. Run Initial Backtest

Test over:

  • Minimum 5 years (preferably 10+)
  • Multiple market regimes (bull, bear, high/low volatility)
  • Realistic costs: Commissions + conservative slippage

Examine initial results for basic viability. If fundamentally broken, iterate on hypothesis.

4. Stress Test the Strategy

This is where 80% of testing time should be spent.

Parameter sensitivity:

  • Test stop loss at 50%, 75%, 100%, 125%, 150% of baseline
  • Test profit target at 80%, 90%, 100%, 110%, 120% of baseline
  • Vary entry/exit timing by ±15-30 minutes
  • Look for "plateaus" of stable performance, not narrow spikes

Execution friction:

  • Increase slippage to 1.5-2x typical estimates
  • Model worst-case fills (buy at ask+1 tick, sell at bid-1 tick)
  • Add realistic order rejection scenarios
  • Test with pessimistic commission structures

Time robustness:

  • Analyze year-by-year performance
  • Require positive expectancy in majority of years
  • Ensure strategy doesn't rely on 1-2 exceptional periods
  • Test in different market regimes separately

Sample size:

  • Absolute minimum: 30 trades
  • Preferred: 100+ trades
  • High confidence: 200+ trades

5. Out-of-Sample Validation

Walk-forward analysis:

  1. Optimize on training period (e.g., Year 1-3)
  2. Test on validation period (Year 4)
  3. Roll forward and repeat
  4. Compare in-sample vs out-of-sample performance

Warning signs:

  • Out-of-sample <50% of in-sample performance
  • Need frequent parameter re-optimization
  • Parameters change dramatically between periods

6. Evaluate Results

Questions to answer:

  • Does edge survive pessimistic assumptions?
  • Is performance stable across parameter variations?
  • Does strategy work in multiple market regimes?
  • Is sample size sufficient for statistical confidence?
  • Are results realistic, not "too good to be true"?

Decision criteria:

  • Deploy: Survives all stress tests with acceptable performance
  • 🔄 Refine: Core logic sound but needs parameter adjustment
  • Abandon: Fails stress tests or relies on fragile assumptions

Key Testing Principles

Punish the Strategy

Add friction everywhere:

  • Commissions higher than reality
  • Slippage 1.5-2x typical
  • Worst-case fills
  • Order rejections
  • Partial fills

Rationale: Strategies that survive pessimistic assumptions often outperform in live trading.

Seek Plateaus, Not Peaks

Look for parameter ranges where performance is stable, not optimal values that create performance spikes.

Good: Strategy profitable with stop loss anywhere from 1.5% to 3.0% Bad: Strategy only works with stop loss at exactly 2.13%

Stable performance indicates genuine edge; narrow optima suggest curve-fitting.

Test All Cases, Not Cherry-Picked Examples

Wrong approach: Study hand-picked "market leaders" that worked Right approach: Test every stock that met criteria, including those that failed

Selective examples create survivorship bias and overestimate strategy quality.

Separate Idea Generation from Validation

Intuition: Useful for generating hypotheses Validation: Must be purely data-driven

Never let attachment to an idea influence interpretation of test results.

Common Failure Patterns

Recognize these patterns early to save time:

  1. Parameter sensitivity: Only works with exact parameter values
  2. Regime-specific: Great in some years, terrible in others
  3. Slippage sensitivity: Unprofitable when realistic costs added
  4. Small sample: Too few trades for statistical confidence
  5. Look-ahead bias: "Too good to be true" results
  6. Over-optimization: Many parameters, poor out-of-sample results

See references/failed_tests.md for detailed examples and diagnostic framework.

Available Reference Documentation

Methodology Reference

File: references/methodology.md

When to read: For detailed guidance on specific testing techniques.

Contents:

  • Stress testing methods
  • Parameter sensitivity analysis
  • Slippage and friction modeling
  • Sample size requirements
  • Market regime classification
  • Common biases and pitfalls (survivorship, look-ahead, curve-fitting, etc.)

Failed Tests Reference

File: references/failed_tests.md

When to read: When strategy fails tests, or learning from past mistakes.

Contents:

  • Why failures are valuable
  • Common failure patterns with examples
  • Case study documentation framework
  • Red flags checklist for evaluating backtests

Critical Reminders

Time allocation: Spend 20% generating ideas, 80% trying to break them.

Context-free requirement: If strategy requires "perfect context" to work, it's not robust enough for systematic trading.

Red flag: If backtest results look too good (>90% win rate, minimal drawdowns, perfect timing), audit carefully for look-ahead bias or data issues.

Tool limitations: Understand your backtesting platform's quirks (interpolation methods, handling of low liquidity, data alignment issues).

Statistical significance: Small edges require large sample sizes to prove. 5% edge per trade needs 100+ trades to distinguish from luck.

Discretionary vs Systematic Differences

This skill focuses on systematic/quantitative backtesting where:

  • All rules are codified in advance
  • No discretion or "feel" in execution
  • Testing happens on all historical examples, not cherry-picked cases
  • Context (news, macro) is deliberately stripped out

Discretionary traders study differently—this skill may not apply to setups requiring subjective judgment.

Weekly Installs
9
Installed on
trae4
opencode4
cursor4
claude-code4
clawdbot2
codex2