m10-performance
SKILL.md
Performance Optimization
Layer 2: Design Choices
Core Question
What's the bottleneck, and is optimization worth it?
Before optimizing:
- Have you measured? (Don't guess)
- What's the acceptable performance?
- Will optimization add complexity?
Performance Decision → Implementation
| Goal | Design Choice | Implementation |
|---|---|---|
| Reduce allocations | Pre-allocate, reuse | with_capacity, object pools |
| Improve cache | Contiguous data | Vec, SmallVec |
| Parallelize | Data parallelism | rayon, threads |
| Avoid copies | Zero-copy | References, Cow<T> |
| Reduce indirection | Inline data | smallvec, arrays |
Thinking Prompt
Before optimizing:
-
Have you measured?
- Profile first → flamegraph, perf
- Benchmark → criterion, cargo bench
- Identify actual hotspots
-
What's the priority?
- Algorithm (10x-1000x improvement)
- Data structure (2x-10x)
- Allocation (2x-5x)
- Cache (1.5x-3x)
-
What's the trade-off?
- Complexity vs speed
- Memory vs CPU
- Latency vs throughput
Trace Up ↑
To domain constraints (Layer 3):
"How fast does this need to be?"
↑ Ask: What's the performance SLA?
↑ Check: domain-* (latency requirements)
↑ Check: Business requirements (acceptable response time)
| Question | Trace To | Ask |
|---|---|---|
| Latency requirements | domain-* | What's acceptable response time? |
| Throughput needs | domain-* | How many requests per second? |
| Memory constraints | domain-* | What's the memory budget? |
Trace Down ↓
To implementation (Layer 1):
"Need to reduce allocations"
↓ m01-ownership: Use references, avoid clone
↓ m02-resource: Pre-allocate with_capacity
"Need to parallelize"
↓ m07-concurrency: Choose rayon or threads
↓ m07-concurrency: Consider async for I/O-bound
"Need cache efficiency"
↓ Data layout: Prefer Vec over HashMap when possible
↓ Access patterns: Sequential over random access
Quick Reference
| Tool | Purpose |
|---|---|
cargo bench |
Micro-benchmarks |
criterion |
Statistical benchmarks |
perf / flamegraph |
CPU profiling |
heaptrack |
Allocation tracking |
valgrind / cachegrind |
Cache analysis |
Optimization Priority
1. Algorithm choice (10x - 1000x)
2. Data structure (2x - 10x)
3. Allocation reduction (2x - 5x)
4. Cache optimization (1.5x - 3x)
5. SIMD/Parallelism (2x - 8x)
Common Techniques
| Technique | When | How |
|---|---|---|
| Pre-allocation | Known size | Vec::with_capacity(n) |
| Avoid cloning | Hot paths | Use references or Cow<T> |
| Batch operations | Many small ops | Collect then process |
| SmallVec | Usually small | smallvec::SmallVec<[T; N]> |
| Inline buffers | Fixed-size data | Arrays over Vec |
Common Mistakes
| Mistake | Why Wrong | Better |
|---|---|---|
| Optimize without profiling | Wrong target | Profile first |
| Benchmark in debug mode | Meaningless | Always --release |
| Use LinkedList | Cache unfriendly | Vec or VecDeque |
Hidden .clone() |
Unnecessary allocs | Use references |
| Premature optimization | Wasted effort | Make it work first |
Anti-Patterns
| Anti-Pattern | Why Bad | Better |
|---|---|---|
| Clone to avoid lifetimes | Performance cost | Proper ownership |
| Box everything | Indirection cost | Stack when possible |
| HashMap for small sets | Overhead | Vec with linear search |
| String concat in loop | O(n^2) | String::with_capacity or format! |
Related Skills
| When | See |
|---|---|
| Reducing clones | m01-ownership |
| Concurrency options | m07-concurrency |
| Smart pointer choice | m02-resource |
| Domain requirements | domain-* |
Weekly Installs
37
Repository
zhanghandong/rust-skillsInstalled on
opencode30
claude-code28
gemini-cli26
codex24
antigravity20
github-copilot15